polars_genson¶
A Polars plugin for JSON schema inference from string columns using genson-rs.
GensonNamespace ¶
Namespace for JSON schema inference operations.
Source code in polars-genson-py/python/polars_genson/__init__.py
schema_to_json ¶
Convert the DataFrame's schema to JSON string representation.
Returns:¶
str JSON string representation of the DataFrame's schema
Source code in polars-genson-py/python/polars_genson/__init__.py
infer_polars_schema ¶
infer_polars_schema(
column: str,
*,
ignore_outer_array: bool = True,
ndjson: bool = False,
merge_schemas: bool = True,
debug: bool = False,
profile: bool = False,
verbosity: Literal["Normal", "Verbose"] = "Normal",
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
avro: bool = False,
wrap_root: bool | str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> pl.Schema
Infer Polars schema from a string column containing JSON data.
Parameters¶
column : str
Name of the column containing JSON strings
ignore_outer_array : bool, default True
Whether to treat top-level arrays as streams of objects
ndjson : bool, default False
Whether to treat input as newline-delimited JSON
merge_schemas : bool, default True
Whether to merge schemas from all rows (True) or return individual schemas (False)
debug : bool, default False
Whether to print debug information
profile : bool, default False
Whether to print profiling information
verbosity : str, default "Normal"
Whether to print verbose debug information
map_threshold : int, default 20
Number of keys above which a heterogeneous object may be rewritten
as a map (unless overridden).
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference. Objects with more
required keys will be forced to Record type. If None, no gating based on
required key count.
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Explicit overrides for specific fields. Values must be "map" or "record".
Example: {"labels": "map", "claims": "record"}.
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects. This avoids unification
failures between scalars and objects. The promoted field name defaults
to the parent key with a __{type} suffix, e.g. a string under
"value" becomes {"value__string": "..."}.
avro : bool, default False
Whether to infer using Avro schema semantics (unions, maps, nullability).
By default (False), JSON Schema mode is used.
wrap_root : str | bool | None, default None
If a string, wrap each JSON row under that key before inference.
If True, wrap under the column name. If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Returns:¶
pl.Schema | list[pl.Schema] The inferred schema (if merge_schemas=True) or list of schemas (if merge_schemas=False)
Source code in polars-genson-py/python/polars_genson/__init__.py
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | |
infer_json_schema ¶
infer_json_schema(
column: str,
*,
ignore_outer_array: bool = True,
ndjson: bool = False,
schema_uri: str | None = "http://json-schema.org/schema#",
merge_schemas: bool = True,
debug: bool = False,
profile: bool = False,
verbosity: Literal["Normal", "Verbose"] = "Normal",
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
avro: bool = False,
wrap_root: bool | str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> dict[str, Any] | list[dict[str, Any]]
Infer JSON schema from a string column containing JSON data.
Parameters¶
column : str
Name of the column containing JSON strings
ignore_outer_array : bool, default True
Whether to treat top-level arrays as streams of objects
ndjson : bool, default False
Whether to treat input as newline-delimited JSON
schema_uri : str or None, default "http://json-schema.org/schema#"
Schema URI to use for the generated schema
merge_schemas : bool, default True
Whether to merge schemas from all rows (True) or return individual schemas (False)
debug : bool, default False
Whether to print debug information
profile : bool, default False
Whether to print profiling information
verbosity : str, default "Normal"
Whether to print verbose debug information
map_threshold : int, default 20
Number of keys above which a heterogeneous object may be rewritten
as a map (unless overridden).
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference. Objects with more
required keys will be forced to Record type. If None, no gating based on
required key count.
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Explicit overrides for specific fields. Values must be "map" or "record".
Example: {"labels": "map", "claims": "record"}.
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects. This avoids unification
failures between scalars and objects. The promoted field name defaults
to the parent key with a __{type} suffix, e.g. a string under
"value" becomes {"value__string": "..."}.
avro: bool, default False
Whether to read the input as an Avro schema instead of JSON schema.
wrap_root : str | bool | None, default None
If a string, wrap each JSON row under that key before inference.
If True, wrap under the column name. If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Returns:¶
dict | list[dict] The inferred JSON schema as a dictionary (if merge_schemas=True) or list of schemas (if merge_schemas=False)
Source code in polars-genson-py/python/polars_genson/__init__.py
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 | |
normalise_json ¶
normalise_json(
column: str,
*,
decode: bool | Schema = True,
unnest: bool = True,
ignore_outer_array: bool = True,
ndjson: bool = False,
empty_as_null: bool = True,
coerce_strings: bool = False,
map_encoding: Literal["entries", "mapping", "kv"] = "kv",
profile: bool = False,
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
wrap_root: bool | str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> pl.Series
Normalise a JSON string column to conform to an inferred Avro schema.
This is a higher-level wrapper around :func:normalise_json, returning the
results as a Polars Series instead of an expression.
Parameters¶
column : str Name of the column containing JSON strings. decode : bool | pl.Schema, default True Controls how the normalised JSON strings are decoded after normalisation:
- If False leave values as raw JSON strings.
- If True (default), decode into native Polars datatypes,
with the schema inferred from the data (may be slower).
- If a polars.Schema, decode using the
provided schema dtype directly (fast path, skips final schema inference).
unnest : bool, default True
Only applies if decode=True. If True, expand the decoded struct
into separate columns for each schema field. If False, keep a
single Series of structs.
ignore_outer_array : bool, default True
Whether to treat a top-level JSON array as a stream of objects instead
of a single array value.
ndjson : bool, default False
Whether the input column contains newline-delimited JSON (NDJSON).
empty_as_null : bool, default True
If True, normalise empty arrays and empty maps to null.
If False, preserve them as empty collections.
coerce_strings : bool, default False
If True, attempt to parse numeric/boolean values from strings
(e.g. "42" → 42, "true" → true). If False, leave them as strings.
map_encoding : {"mapping", "entries", "kv"}, default "kv"
Encoding to use for Avro maps:
- "mapping": plain JSON object ({"en":"Hello"})
- "entries": list of single-entry objects ([{"en":"Hello"}])
- "kv": list of {key,value} dicts ([{"key":"en","value":"Hello"}])
profile : bool, default False
Whether to display timing profile information
map_threshold : int, default 20
Threshold above which objects with many varying keys are normalised
as Avro maps instead of records.
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference during schema
inference. Objects with more required keys will be forced to Record type.
If None, no gating based on required key count.
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Per-field overrides for schema inference (e.g. {"labels": "map"}).
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects. This avoids unification
failures between scalars and objects. The promoted field name defaults
to the parent key with a __{type} suffix, e.g. a string under
"value" becomes {"value__string": "..."}.
wrap_root : str | bool | None, default None
If a string, wrap each JSON row under that key before normalisation.
If True, wrap under the column name. If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Returns:¶
pl.Series
A Series of normalised JSON data. Each row is rewritten to match the
same Avro schema, with consistent shape across the column.
If unnest=True, the Series is expanded into multiple columns
corresponding to schema fields.
Source code in polars-genson-py/python/polars_genson/__init__.py
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 | |
json_to_schema ¶
Convert a JSON string to Polars schema.
Parameters¶
str JSON string to convert to Polars schema
Returns:¶
schema : pl.Schema The Polars schema representation of the JSON
Source code in polars-genson-py/python/polars_genson/__init__.py
schema_to_json ¶
Convert a Polars schema to JSON string representation.
Parameters¶
schema : pl.Schema The Polars schema to convert to JSON
Returns:¶
str JSON string representation of the schema
Source code in polars-genson-py/python/polars_genson/__init__.py
plug ¶
Wrap Polars' register_plugin_function helper to always pass the same lib.
Pass changes_length when using the merge_schemas (per-row) inference, as we only
build a single schema in that case (so it'd be a waste to make more than one row).
Source code in polars-genson-py/python/polars_genson/__init__.py
infer_json_schema ¶
infer_json_schema(
expr: Expr,
*,
ignore_outer_array: bool = True,
ndjson: bool = False,
schema_uri: str | None = "http://json-schema.org/schema#",
merge_schemas: bool = True,
debug: bool = False,
profile: bool = False,
verbosity: Literal["Normal", "Verbose"] = "Normal",
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
avro: bool = False,
wrap_root: str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> pl.Expr
Infer JSON schema from a string column containing JSON data.
Parameters¶
expr : pl.Expr
Expression representing a string column containing JSON data
ignore_outer_array : bool, default True
Whether to treat top-level arrays as streams of objects
ndjson : bool, default False
Whether to treat input as newline-delimited JSON
schema_uri : str or None, default "http://json-schema.org/schema#"
Schema URI to use for the generated schema
merge_schemas : bool, default True
Whether to merge schemas from all rows (True) or return individual schemas (False)
debug : bool, default False
Whether to print debug information
profile : bool, default False
Whether to print profiling information
verbosity : str, default "Normal"
Whether to print verbose debug information
map_threshold : int, default 20
Number of keys above which a heterogeneous object may be rewritten
as a map (unless overridden).
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference. Objects with more
required keys will be forced to Record type. If None, no gating based on
required key count (preserves existing behavior).
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Explicit overrides for specific fields. Values must be "map" or "record".
Example: {"labels": "map", "claims": "record"}.
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects. This avoids unification
failures between scalars and objects. The promoted field name defaults
to the parent key with a __{type} suffix, e.g. a string under
"value" becomes {"value__string": "..."}.
avro: bool, default False
Whether to output an Avro schema instead of JSON schema.
wrap_root : str | None, default None
If a string, wrap each JSON row under that key before inference.
If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Returns:¶
pl.Expr Expression representing the inferred JSON schema
Source code in polars-genson-py/python/polars_genson/__init__.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | |
infer_polars_schema ¶
infer_polars_schema(
expr: Expr,
*,
ignore_outer_array: bool = True,
ndjson: bool = False,
merge_schemas: bool = True,
debug: bool = False,
profile: bool = False,
verbosity: Literal["Normal", "Verbose"] = "Normal",
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
avro: bool = False,
wrap_root: str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> pl.Expr
Infer Polars schema from a string column containing JSON data.
Parameters¶
expr : pl.Expr
Expression representing a string column containing JSON data
ignore_outer_array : bool, default True
Whether to treat top-level arrays as streams of objects
ndjson : bool, default False
Whether to treat input as newline-delimited JSON
merge_schemas : bool, default True
Whether to merge schemas from all rows (True) or return individual schemas (False)
debug : bool, default False
Whether to print debug information
profile : bool, default False
Whether to print profiling information
verbosity : str, default "Normal"
Whether to print verbose debug information
map_threshold : int, default 20
Number of keys above which a heterogeneous object may be rewritten
as a map (unless overridden).
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference. Objects with more
required keys will be forced to Record type. If None, no gating based on
required key count.
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Explicit overrides for specific fields. Values must be "map" or "record".
Example: {"labels": "map", "claims": "record"}.
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects. This avoids unification
failures between scalars and objects. The promoted field name defaults
to the parent key with a __{type} suffix, e.g. a string under
"value" becomes {"value__string": "..."}.
avro: bool, default False
Whether to read the input as an Avro schema instead of JSON schema.
wrap_root : str | None, default None
If a string, wrap each JSON row under that key before inference.
If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Returns:¶
pl.Expr Expression yielding the inferred Polars schema (as a struct of {name, dtype} fields).
Source code in polars-genson-py/python/polars_genson/__init__.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | |
normalise_json ¶
normalise_json(
expr: Expr,
*,
ignore_outer_array: bool = True,
ndjson: bool = False,
empty_as_null: bool = True,
coerce_strings: bool = False,
map_encoding: Literal["entries", "mapping", "kv"] = "kv",
profile: bool = False,
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
wrap_root: str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> pl.Expr
Normalise a JSON string column against an inferred Avro schema.
This performs schema inference once across all rows, then rewrites each row to conform to that schema. The output is a new column of JSON strings with consistent structure and datatypes.
Parameters¶
expr : pl.Expr
Expression representing a string column of JSON data.
ignore_outer_array : bool, default True
Treat a top-level JSON array as a stream of objects (like NDJSON).
ndjson : bool, default False
Treat input as newline-delimited JSON rather than a single JSON document.
empty_as_null : bool, default True
Convert empty arrays/maps into null to preserve row count when exploding.
Disable with False to keep empty collections.
coerce_strings : bool, default False
If True, attempt to coerce string values into numeric/boolean types
where the schema expects them. If False, unmatched strings become null.
map_encoding : {"mapping", "entries", "kv"}, default "kv"
Encoding to use for Avro maps:
- "mapping": plain JSON object ({"en":"Hello"})
- "entries": list of single-entry objects ([{"en":"Hello"}])
- "kv": list of {key,value} dicts ([{"key":"en","value":"Hello"}])
profile : bool, default False
Whether to show timing profile output
map_threshold : int, default 20
Maximum number of keys before an object is treated as a map
(unless overridden).
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference during schema
inference. Objects with more required keys will be forced to Record type.
If None, no gating based on required key count.
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Override the inferred type for specific fields. Keys are field names,
values must be either "map" or "record".
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects. This avoids unification
failures between scalars and objects. The promoted field name defaults
to the parent key with a __{type} suffix, e.g. a string under
"value" becomes {"value__string": "..."}.
wrap_root : str | None, default None
Wrap each JSON row under that key before normalisation.
If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Returns:¶
pl.Expr An expression producing a new string column, where each row is a normalised JSON object matching the inferred Avro schema.
Examples:¶
df = pl.DataFrame({ ... "json_data": [ ... '{"id": "1", "labels": {}}', ... '{"id": 2, "labels": {"en": "Hello"}}', ... ] ... }) df.select(normalise_json(pl.col("json_data"))) shape: (2, 1) ┌──────────────────────────────────────┐ │ normalised │ │ --- │ │ str │ ╞══════════════════════════════════════╡ │ {"id": "1", "labels": null} │ │ {"id": "2", "labels": {"en":"Hello"}}│ └──────────────────────────────────────┘
Source code in polars-genson-py/python/polars_genson/__init__.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | |
infer_from_parquet ¶
infer_from_parquet(
input_path: str | Path,
column: str,
output_path: str | Path | None = None,
*,
ignore_outer_array: bool = True,
ndjson: bool = False,
schema_uri: str | None = "http://json-schema.org/schema#",
debug: bool = False,
profile: bool = False,
verbosity: Literal["Normal", "Verbose"] = "Normal",
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
avro: bool = False,
wrap_root: str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> str | dict
Infer JSON schema from a Parquet column.
Parameters¶
input_path : str | Path
Path to input Parquet file
column : str
Name of column containing JSON strings
output_path : str | Path, optional
Path to write schema JSON. If None, returns schema as dict
ignore_outer_array : bool, default True
Whether to treat top-level arrays as streams of objects
ndjson : bool, default False
Whether to treat input as newline-delimited JSON
schema_uri : str or None, default "http://json-schema.org/schema#"
Schema URI to use for the generated schema
debug : bool, default False
Whether to print debug information
profile : bool, default False
Whether to print profiling information
verbosity : str, default "Normal"
Whether to print verbose debug information
map_threshold : int, default 20
Number of keys above which a heterogeneous object may be rewritten
as a map (unless overridden).
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference. Objects with more
required keys will be forced to Record type. If None, no gating based on
required key count.
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Explicit overrides for specific fields. Values must be "map" or "record".
Example: {"labels": "map", "claims": "record"}.
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects.
avro: bool, default False
Whether to output an Avro schema instead of JSON schema.
wrap_root : str | None, default None
If a string, wrap each JSON row under that key before inference.
If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Returns:¶
str | dict If output_path is given, returns success message. If output_path is None, returns schema as dict.
Examples:¶
Infer schema and return as dict¶
schema = infer_from_parquet("data.parquet", "claims")
Infer schema and write to file¶
infer_from_parquet("data.parquet", "claims", "schema.json")
Source code in polars-genson-py/python/polars_genson/__init__.py
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | |
normalise_from_parquet ¶
normalise_from_parquet(
input_path: str | Path,
column: str,
output_path: str | Path,
*,
output_column: str | None = None,
ignore_outer_array: bool = True,
ndjson: bool = False,
empty_as_null: bool = True,
coerce_strings: bool = False,
map_encoding: Literal["entries", "mapping", "kv"] = "kv",
profile: bool = False,
map_threshold: int = 20,
map_max_required_keys: int | None = None,
unify_maps: bool = False,
no_unify: set[str] | None = None,
force_field_types: dict[str, str] | None = None,
force_scalar_promotion: set[str] | None = None,
wrap_scalars: bool = True,
wrap_root: str | None = None,
no_root_map: bool = True,
max_builders: int | None = None,
) -> None
Normalise JSON data from a Parquet column and write back to Parquet.
Parameters¶
input_path : str | Path
Path to input Parquet file
column : str
Name of column containing JSON strings
output_path : str | Path
Path to write normalised Parquet file (can be same as input_path for in-place)
output_column : str, optional
Name for output column. Defaults to same as input column name
ignore_outer_array : bool, default True
Whether to treat a top-level JSON array as a stream of objects instead
of a single array value.
ndjson : bool, default False
Whether the input column contains newline-delimited JSON (NDJSON).
empty_as_null : bool, default True
If True, normalise empty arrays and empty maps to null.
If False, preserve them as empty collections.
coerce_strings : bool, default False
If True, attempt to parse numeric/boolean values from strings
(e.g. "42" → 42, "true" → true). If False, leave them as strings.
map_encoding : {"mapping", "entries", "kv"}, default "kv"
Encoding to use for Avro maps:
- "mapping": plain JSON object ({"en":"Hello"})
- "entries": list of single-entry objects ([{"en":"Hello"}])
- "kv": list of {key,value} dicts ([{"key":"en","value":"Hello"}])
profile : bool, default False
Whether to display timing profile information
map_threshold : int, default 20
Threshold above which objects with many varying keys are normalised
as Avro maps instead of records.
map_max_required_keys : int, optional
Maximum number of required keys allowed for Map inference during schema
inference. Objects with more required keys will be forced to Record type.
If None, no gating based on required key count.
unify_maps : bool, default False
Enable unification of compatible but non-homogeneous record schemas into maps.
When True, record schemas with compatible field types can be merged into a single
map schema with selective nullable fields.
no_unify: set[str] | None, default None
Prevent unification of keys under these field names with their sibling record fields.
force_field_types : dict[str, str], optional
Per-field overrides for schema inference (e.g. {"labels": "map"}).
force_scalar_promotion : set[str], optional
Set of field names that should always be promoted to wrapped scalars,
even when they appear as simple scalars. Ensures schema stability for
fields known to have heterogeneous types across chunks.
Example: {"precision", "datavalue"}.
wrap_scalars : bool, default True
Whether to promote scalar values into singleton objects when they appear
in contexts where other rows provide objects.
wrap_root : str | None, default None
If a string, wrap each JSON row under that key before normalisation.
If None, leave rows unchanged.
no_root_map : bool, default True
Prevent document root from becoming a map type, even if it meets map inference criteria
max_builders : int, optional
Maximum number of schema builders to create in parallel at once.
Lower values reduce peak memory usage during schema inference.
If None, processes all strings at once. Default is None.
Examples:¶
Normalize and write to new file¶
normalise_from_parquet( ... "input.parquet", ... "claims", ... "output.parquet", ... map_threshold=0, ... unify_maps=True ... )
In-place normalization (overwrites source)¶
normalise_from_parquet( ... "data.parquet", ... "claims", ... "data.parquet" ... )
Source code in polars-genson-py/python/polars_genson/__init__.py
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 | |
read_parquet_metadata ¶
avro_to_polars_schema ¶
Convert an Avro schema to a Polars Schema.
Parameters¶
avro_schema_json : str JSON string containing Avro schema debug : bool, default False Whether to print debug information
Returns:¶
pl.Schema Polars schema representation
Source code in polars-genson-py/python/polars_genson/__init__.py
schema_to_dict ¶
Convert a Polars Schema into a nested Python dict.
Source code in polars-genson-py/python/polars_genson/__init__.py
dtypes ¶
Dtype parsing from concise string format used to serialise across Rust to Python.
polars ¶
Extend polars DataFrame with genson namespace.
utils ¶
Utility functions for polars-genson plugin.
parse_into_expr ¶
parse_into_expr(
expr: IntoExpr,
*,
str_as_lit: bool = False,
list_as_lit: bool = True,
dtype: PolarsDataType | None = None,
) -> pl.Expr
Convert the user input into a polars.Expr.
- If
expris already anpl.Expr, we return it as-is. - If
expris a string andstr_as_lit=False, interpret aspl.col(expr). - Otherwise, treat it as a literal (possibly typed by
dtype).
Source code in polars-genson-py/python/polars_genson/utils.py
parse_version ¶
Simple version parser; splits a version string like "0.20.16" into a tuple of ints.
Takes a version string like "0.20.16" and converts it into a tuple of ints (0, 20, 16).
Source code in polars-genson-py/python/polars_genson/utils.py
format_time ¶
Convert minutes since midnight to "HH:MM" format.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
minutes
|
int
|
Minutes since midnight |
required |
Returns:
| Type | Description |
|---|---|
str
|
Time string in "HH:MM" format |
Source code in polars-genson-py/python/polars_genson/utils.py
parse_constraint ¶
Parse a constraint string into its components.
Recognized formats: - "≥Xh apart" - "≥Xh before CATEGORY" - "≥Xh after CATEGORY"
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
constraint
|
str
|
Constraint string |
required |
Returns:
| Type | Description |
|---|---|
tuple[str, int, str]
|
Tuple of (type, hours, reference) |
Source code in polars-genson-py/python/polars_genson/utils.py
parse_window ¶
Parse a window string into its components.
Recognized formats: - "HH:MM" (anchor) - "HH:MM-HH:MM" (range)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
window
|
str
|
Window string |
required |
Returns:
| Type | Description |
|---|---|
dict[str, str | int]
|
Dictionary with window information |
Source code in polars-genson-py/python/polars_genson/utils.py
parse_time ¶
Convert "HH:MM" string to minutes since midnight.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
time_str
|
str
|
Time string in "HH:MM" format |
required |
Returns:
| Type | Description |
|---|---|
int
|
Minutes since midnight (e.g., "08:30" -> 510) |